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A benchmark data set of steroids with known affinity for sex hormone-binding globulin (SHBG) has been
widely used to validate popular molecular field-based QSAR techniques. We have expanded the data set by
adding a number of nonsteroidal SHBG ligands identified both from the literature and in our previous
experimental studies. This updated molecular set has been used herein to develop 4D QSAR models based
on “inductive” descriptors and to gain insight into the molecular basis of protein–ligand interactions. Molecular
alignment was generated by means of docking active compounds into the active site of the SHBG.
Surprisingly, the alignment of the benchmark steroids contradicted the classical ligand-based alignment
utilized in previous CoMFA and CoMSIA models yet afforded models with higher statistical significance
and predictive power. The resulting QSAR models combined with CoMFA and CoMSiA models as well as
structure-based virtual screening allowed discovering several low-micromolar to nanomolar nonsteroidal
inhibitors for human SHBG.

Introduction

The blood of vertebrates contains two high-affinity steroid-
binding proteins, known as sex hormone-binding globulin
(SHBG)a and corticosteroid-binding globulin (CBG), whose
steroid-binding characteristics have been studied extensively.1

A group of compounds known to bind these proteins form a
popular “steroid benchmark set” utilized in many in silico
modeling studies2–11 including popular CoMFA12 and CoM-
SiA13 3D QSAR methods.

In a series of previous reports, we have investigated the
SHBG system and identified various nonsteroidal ligands using
several innovative in silico screening methods.17–19 Furthermore,
we tested the suggested lead compounds experimentally with
tritium-labeled 5R-dihydrotestosterone in a competitive ligand-
binding assay. For the purpose of the current study, we have
combined the available data on known SHBG ligands (both
steroidal and nonsteroidal) and formed an expanded set of 84
compounds (shown in Table 1). This updated benchmark set
has been used to develop various QSAR solutions enabling the
discovery of nonsteroidal SHBG binders.

Results

We have considered the 84 SHBG ligands (including 21
steroids present in the original benchmark set) as the training
set and docked all molecules into the SHBG active site using
the Glide program with the default settings of the Extra Precision
mode,20 as in our previous SHBG studies.17–19 For this purpose,
the structure of the protein with cocrystallized ligand 5R-
androstane-3�,17R-diol corresponding to the 1LHN entry of the
Protein Databank was preoptimized with the MMFF force

field.21 The ligand was then removed, and the protein structure
was used in the self-docking analysis, which demonstrated that
the crystallographic pose of the bound steroid could be
accurately reproduced (Figure 1).

Importantly, the Extra Precision Glide docking protocol
reproduced the optimal orientation of androgens and estrogens
in the SHBG steroid-binding site, in accordance with recent
crystallographic and mutation experiments: specifically, C18
estrogens and C19 androgens have been shown to reside within
the SHBG steroid-binding site predominantly in opposite
orientations.14,15 Thus, while a critical ligand-anchoring residue
Ser42 in human SHBG14 coordinates the 17�-hydroxyl of
estrogens, the same residue forms a hydrogen bond with
functional groups at the C3 position of androgens. This is
illustrated in Figure 2, which shows the positions of 5R-
dihydrotestosterone (green) and estradiol (yellow) identified in
the structures of human SHBG cocrystallized with these steroids
(Protein Databank16 entries 1KDM and 1LHU, respectively).

Notably, these crystallography-derived orientations of estro-
gens and androgens within the human SHBG steroid-binding
site (confirmed by our docking experiments) differ from the
field-similarity based alignment of SHBG ligands (Figure 1B)
used in the original CoMFA12 and CoMSiA13 studies, as well
as in all subsequent QSAR reports involving the steroid
benchmark set.2–11

Out of 84 docked compounds, nine estrogen derivatives (i.e.,
C18-steroids containing aromatic ring “A”), i.e., estradiol,
estriol, estrone, 2-iodoestradiol, 2-methoxyestradiol, equilenin,
equilin, 17-deoxyestrone, and estradiol 3-benzoate, all favored
a binding pose allowing the coordination of functional groups
at C17 with the Ser42 side chain. In addition, one C19 steroid,
etiocholanolone, was also docked in such orientation that may
be attributed to some structural features of the compound (such
as an unusual bending angle of a scaffold) or an artifact of the
docking experiment. Otherwise, all other non-estrogen deriva-
tives (compounds without aromatic “A” steroidal ring) dem-
onstrated an opposite docking orientation corresponding to Ser42
anchoring functional groups at C3 of the steroid scaffold.
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Table 1. Known SHBG Binders Utilized for QSAR Modeling (Training Set) and Novel Nonsteroidal Ligands Identified in the Current Study Are
Presented along with the Corresponding Protein–Ligand Dissociation Parameters pKd and Predicted Target Affinities Produced by QSAR and Virtual
Screening Approaches
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In addition to the correct identification of different binding
modes for C18 estrogens and C19 androgens within the SHBG
active site, the virtual screening protocol we have utilized
produced docking scores that generally corresponded to the

experimental SHBG binding constants. The resulting linear
dependences with r2 ) 0.34 for the entire set of 84 molecules,
and r2 ) 0.48 for the 21 benchmark steroids alone, are shown
in Figure 3 (it should be noted that such modest correlation
coefficients are common for docking scoring functions; for
instance see ref 22).

Thus, we conclude that the extra precision docking of known
SHBG ligands resulted in binding poses that generally reflect
the preferred orientations of specific steroid classes in the crystal
structures. Using the resulting docking poses of the canonical
benchmark set of 21 steroids, as well as docking poses of the
updated set of 84 SHBG ligands, we then created CoMFA and
CoMSiA models along with several additional QSAR solutions
for in silico lead discovery.

CoMFA Models. As described above, we adopted the
docking poses of SHBG ligands as the basis for their structural
alignment. Using this alignment (which takes into account
opposite direction of SHBG binding for C18 and C19 steroids),
we assembled two training sets: corresponding to the original

Table 1. Continued

** These four entries could not be scored by in silico approaches, as they failed to dock into the 1LHN active site. # Twenty-one steroids forming the
original “steroid benchmark set”. $ We have used the corrected pK ) 7.44 value for deoxycortisol instead of pK ) 7.20 from ref 18. The columns labeled
with Roman numbers contain predictions by various QSAR models: (I) predictions by QuaSAR-Evolution model created on the basis of the updated dataset;
(II) GFA-QSAR model trained on the updated dataset (84 entries); (III) CoMFA model trained on the original dataset (21 entries); (IV) CoMFA model
trained on the updated dataset (84 entries); (V) CoMSiA model trained on the original dataset (21 entries); (VI) CoMSiA model trained on the updated
dataset (84 entries); (VII) results of 1LHN XP-docking with Glide; (VIII) results 1KDM XP-docking with Glide. Identification codes for compounds 85–91
correspond to internal IDs of the ZINC molecular database.36

Figure 1. Superposition of a native ligand from 1LHN protein structure
(colored in maroon) with the docking pose of 5R-androstane-3�,17R-
diol (AON) established by extra precision Glide protocol (in gold).
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benchmark set of 21 steroids and an updated set including all
84 SHBG binders.

Utilization of the 1LHN-docking poses of 21 benchmark
steroids resulted in a CoMFA model very similar in its statistical
characteristics to that in the original study12 (training statistics
are also shown in Table 2). This striking similarity in the

statistical parameters of CoMFA models irrespective of drastic
differences between underlying alignment underscores an ap-
parent (and perhaps unexpected) insensitivity of CoMFA to
molecular alignment’s nuances. Obviously, the two models, i.e.,
the “classical”12 and the one developed here using a different
(based of docking orientations) compound alignment, are
associated with completely different steric and electrostatic fields
suggesting quite different avenues for structural modifications
that should putatively lead to more active compounds. This
ambiguity of CoMFA model interpretation of statistically
indistinguishable alternative models should be kept in mind as
a potential source of misleading hypotheses concerning novel
compound design.

The CoMFA model created on the basis of the expanded set
of 84 SHBG binders produced very similar training r2 and q2

values, but allowed 1.8-fold better recovery of the most active
compounds from the training set. The corresponding enrichment
factor (EF) values calculated with “top 15% hit-list” criteria
applied to the predicted training set values are also given in
Table 2 (more details on the calculation of enrichment factors
EF can be found in the Materials and Methods).

CoMSiA Analysis of the Data Sets. We also utilized the
training sets of 21 and 84 superimposed molecules to create
CoMSiA models and conduct comparative analysis of their
accuracy and enrichment performance. Using the corresponding

Figure 2. Optimal (left panel) and traditional (right panel) orientations of 5R-dihydrotestosterone (DHT) shown in gold and estradiol shown in
green. The correct superposition of the compounds within the human SHBG steroid-binding site was derived from the 1KDM and 1LHU crystal
structures. The traditional alignment was obtained by SYBIL.

Figure 3. Top panel: the linear dependence between GlideScore values
estimated by extra precision docking of 84 trainng set compounds and
the corresponding pKd experimental values (three outliers have been
removed). Bottom panel: the same dependence limited to 21 benchmerk
steroids.

Table 2. Training and Testing Statistics for Computational Models
Created and Their Combinations Investigated in the Current Study

models r2 q2
LOO

training
set EF

QSAR_GFA_7.0Å 0.56 0.44 3.5
QuaSAR_Evolution_7.0Å 0.66 0.58 3.5
CoMFA_corrected_21 0.99 0.45 3.0
CoMFA_traditional_21 0.98 0.53 2.0
CoMFA_84 0.99 0.41 5.5
CoMSiA_corrected_21 0.99 0.51 2.0
CoMSiA_traditional_21 0.98 0.53 1.0
CoMSiA_84a 0.91 0.49 5.0
1kdm_XP_GlideScore 2.5
1lhn_XP_GlideScore 2.0
2Dock_CoMFA84_CoMSiA84_GFA_QuaSAR 5.0
2Dock_CoMFA84_GFA 5.0
2Dock_CoMSiA84_GFA 4.0
2Dock_CoMFA84_CoMSiA84_GFA 5.0

a Three outliers have been removed when training the model. “Corrected”
notion reflects alignment of SHBG ligands based on the docking poses.
“traditional” notion corresponds to steroid scaffold alignments used in the
original CoMFA and CoMSiA studies and based on maximal molecular
field similarity.

2050 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 7 CherkasoV et al.



sets of aligned structures, we computed the standard CoMSiA
fields (steric, electrostatic, hydrophobic, hydrogen bond donor,
and hydrogen bond acceptor) and created PLS23-based solutions.

On one hand, the results from Table 2 indicate the CoMSiA
solutions derived from the original benchmark and expanded
sets of SHBG ligands have similar training accuracy with r2 in
0.91–0.99 range and q2 neighboring 0.5. On the other hand, as
in the case of CoMFA models, the CoMSiA solution created
on the basis of the expanded set of SHBG ligands allowed much
better enrichment of the training set (EF ) 5.0) when compared
to the model customized for 21 highly similar original bench-
mark structures (EF ) 2.0). Notably, the use of crystallography-
complying and traditional, field similarity-based alignments of
21 benchmark steroids, as in case of CoMFA, did not result in
substantially different QSAR models (both solutions are featured
in Table 2).

Application of the LFER Principle to Protein–Ligand
Interactions Using 4D “Inductive” Descriptors. Previously,
we have developed descriptors (called “inductive”) that were
successfully adopted for QSAR modeling of SHBG ligands.19–21

These “inductive” 3D-QSAR solutions have been derived from
the LFER (linear free energy relationship)-based equations for
inductive and steric substituents parameters (see ref 24 for more
details)
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where RS is the steric influence of a group of n atoms
constituting a group G onto a single atom j (reaction center),
σ* is the inductive effect of G onto reaction center j. R
corresponds to the covalent atomic radii of an ith atom of a
group G, r is the distance between atoms i and j, and �0 is atomic
electronegativity. Parameters R and � in eqs 1 and 2 normalize
them to the format of Taft’s original electronic and steric
substituent constants.24,25

Considering the initial success of “inductive” descriptors in
QSAR,17–19,26–28 we adopted the LFER methodology to describe
protein–ligand interactions and updated the scope of eqs 1 and
2 to the effects translated by N-atomic ligand L onto a given
receptor atom j
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where parameters RsLfp and σLfp* describe the overall inductive
and steric interactions occurring between the entire bound ligand
and a receptor’s atom considered as a reaction center.

Since the LFER principle is not a priori limited to ligand-
based considerations, it is reasonable to consider how inductive
and steric effects influence it in the context of intermolecular
interactions. The exact nature of inductive effects (2) is still
debated, but direct electrostatic interactions (applicable for both
intra- and intermolecular levels of approximations) are often
viewed as the main mechanism of its transduction.25 Similarly,
the model of frontal steric effects25 underlying eq 1 is not
dependent on atomic connectivity or grouping and can be easily
applied for quantification of protein–ligand mutual screening.25

Thus, we have applied eqs 3 and 4 to the 84 compound
training set placed inside the 1LHN active site and calculated
normalized RS and σ* parameters for their optimal target binding
orientations. We have considered all protein atoms (except
nonpolar hydrogens) in 7.0 Å ligand proximity (see Materials
and Methods for details).

In our opinion, these molecular parameters RsLfp and σLfp*

can be regarded as receptor-dependent 3D-QSAR descriptors
because they are derived from three-dimensional structures of
compounds and rely on their positioning within the target protein
taking into account pairing of protein and ligand atoms. We
expected that such 4D “inductive” descriptors would possess
good predictive ability and illustrate the advantage of using
correct steroidal alignment in modeling SHBG binding.

GFA-Based QSAR Models. Considering all structures from
the training set (84 entries), we computed the full spectrum of
RS and σ* values (one of each for every considered atom of
7.0 Å ligand surrounding). To relate such a large number of
descriptors to dependent variables pK d we employed the Genetic
Algorithm approximation, which has been applied for QSAR
analyses relying on a heuristic search.29

In our current study, we adopted the Genetic Function
Approximation (GFA) developed by Rogers and Hopfinger,30

which is based on the G/SPLINES Genetic Algorithm implemen-
tation.31,32 Given a large number of QSAR descriptors to sample,
this approach creates a “population” of QSAR models and
applies the “fitness function” to iteratively evolve them to an
optimal solution (i.e., to find the most appropriate set of
descriptors). The GFA approach uses Friedman’s “lack-of-fit”
(LOF) fitness criteria

LOF = LSE

(1 − c + dp
n )2

where LSE is the least squared error; c is the number of
descriptors employed by the model; d is the user-defined
smoothing factor, p is the total number of available descriptors,
and n is the number of the training set molecules.

We have applied the GFA approach implemented within the
WOLF package with the following default settings: the initial
population of QSAR models has been limited to 5000; the total
number of crossovers was set to 200000, and up to 50% of
models were allowed to mutate in every generation (i.e., to
randomly sample descriptor values). The resulting linear QSAR
solutions have been constructed using the PLS approach23 and
have been further validated by the leave-one-out (LOO)
procedure.

The parameters of the final optimal QSAR solution based on
six “inductive” descriptors are presented in Table 2, while the
predicted activity parameters are listed in Table 1. As these
results indicate, the Genetic Algorithm provided modestly
accurate but, nonetheless, reasonable and simple models predict-
ing 84 SHBG binding constants with correlation coefficients r2

) 0.56 and q2 ) 0.45. The developed GFA-QSAR model could
efficiently rank the most active ligands and despite modest
training statistics allowed a 3.5-fold hit enrichment.

QuaSAR-Evolution Models. In addition to the GFA method,
we used the Genetic Algorithm-based approach implemented
by the QuaSAR-Evolution module of the MOE program.34 This
tool enables automated QSAR modeling “on the fly” and is
available through the “SVL exchange”.35

We applied the QuaSAR-Evolution tool with its default
settings: (a) the initial population of 100 models; (b) four
additional descriptors added to each generation of QSAR
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models; (c) multiple linear regression (MLR) mode; (d) the total
number of crossovers set to 50000; (e) allowed 50% mutation;
and (f) the autotermination factor of 1000 (meaning that the
calculation was stopped when the “fitness function” value does
not change during 1000 crossovers). The resulting QSAR
solution demonstrated better training accuracy compared to the
previous GFA models with r2 ) and q2 estimated as 0.66 and
0.58, respectively (also allowing 3.50-fold enrichment of the
training set). It should also be mentioned that the developed
linear QSAR model could provide some insight into factors
determining SHBG dissociation constants:

pKd ) 4.63 − 0.98Rs_ASP65 − 1.18Sigma_ASP65 +
0.36Sigma_GLY58 + 1.22Sigma_HIS136 −

0.41Sigma_LEU69 +
0.66Sigma_PHE44 − 0.54Sigma_THR60 −

0.65Sigma_VAL127; N ) 84r2 ) 0.66q2 ) 0.58SE ) 0.79
(5)

The above LFER equation illustrates that one of the most
significant contributions to pKd comes from inductive interaction
between a ligand and the Asp65 side-chain (critical anchoring
residue located at the “gating” mobile loop of the SHBG active
site believed to control ligand uptake and release15). Steric
interactions with Asp65 that are described by the Rs_ASP65
descriptor also play an important role in ligand binding, such
that (5) illustrates its minimization helps to increase pKd.

Similarly, according to (5), the electron-withdrawing effect
exhibited toward Gly58 should also increase pKd, and it is likely
that the backbone oxygen of that residue influences the polar
stabilization and hydrogen bonding of some SHBG ligands. The
possible role of inductive interactions between a bound ligand
and Thr60 is also reflected by (5).

Of note, the involvement of residues His136, Leu69, Phe44,
and Val129 featured in (5) with respect to protein–ligand
interactions is less obvious, and some known ligand binders
such as Ser42 are not reflected by (5). These inconsistencies
can perhaps be explained by the limited variability of inductive
and steric effects of some residues or by the approximate nature
of Genetic Algorithm solutions.

Overall, the above results substantiate the adequate accuracy
of the developed QSAR models and their ability to account for
specific protein–ligand interactions.

Consensus Scoring by the Developed QSAR Models. To
further expand the utility of the developed QSAR models, we
have implemented the consensus scoring approach. Thus, eight
different predicted parameters of potential activity (two Glide-,
two CoMFA-, two CoMSiA-, one GFA-QSAR, and one
QuaSAR-Evolution values) have been produced for every entry
in the training set. Based on these sorted values, each molecule
would then receive a binary 1.0 vote for every “top15%
appearance” (thus, the maximum possible vote was set to 8.0).
The final cumulative vote was then used to rank the training
set entries.

The resulting 5.0-fold enrichment of the top 15% binders in
the “hit list” clearly demonstrated that the consensus scoring
strategy produces the most balanced predictions and that a
synergetic approach can capitalize on the strengths of individual
approaches (such as the positive predictive power of ligand-
based QSAR techniques and the negative predictive power of
docking) and compensate for their weaknesses. Furthermore,
we have evaluated several other combined strategies (also
featured in Table 2) and discovered that all of them resulted in
consistent 4.0–5.0-fold enrichments of the training set.

It should be noted that the use of complementary predicting
tools and the implementation of scoring/voting protocols has

recently become one of the most important topics in the field
of computer-aided drug design.38

Selection of Potential SHBG Binders. Overall, the results
of QSAR modeling of the training set demonstrated good
accuracy of the developed solutions, their useful synergy, and
ability to enrich for the most active target binders. These
observations encouraged us to apply our scoring systems to
electronic collections of commercially available chemicals for
the identification of novel nonsteroidal SHBG binders. In this
study, we used the ZINC 5.0 molecular database36 that included
3.3 million entries. From these, we derived 2066886 nonredun-
dant molecules satisfying drug-likeness criteria (see the Materials
and Methods for details).

As described in the previous section, all created fields-based
and 4D-QSAR solutions were based on high-precision docking
possess. Therefore, in order to apply pretrained CoMFA,
CoMSiA, and 4D-QSAR models, we docked all 2066886
structures into the 1LHN ligand-binding site. This protein
structure was used because, as previously noted, it allowed us
to produce the correct docking poses and binding characteristics
of the training set compounds. Furthermore, to account for
possible induced changes in the SHBG active site, we also
docked all 2066886 molecules into a 1KDM protein structure
(corresponding to SHBG cocrystallized with 5R-dihydrotest-
osterone, i.e., compound with the highest binding affinity). All
molecular structures that produced GlideScore values <-7.0
were selected, and thus, two redundant hit-lists have been
generated, with one of them corresponding to 143,421 best
1KDM-docked ligands and 213,191 to top 1LHN-predicted
binders. Next, we implemented a scoring system that assigned
a 1.0 vote to the top 5% of both 1KDM (7,171) and 1LHN
(10,659) hits, while all other docked ligands were given a vote
value of 0. Based on the resulting cumulative vote, we selected
3759 structures for future assessment.

All of the selected docking poses were examined visually;
several broken and inconsistently docked structures were
removed, and all steroidal derivatives and compounds containing
a carboxylic group were eliminated, in order to reduce the total
number of selected structures to 1,419. All of these ligands were
then redocked into the 1KDM and 1LHN active sites using the
XP_Glide.20

The resulting “extra precision” docking poses were scored
by CoMFA_21, CoMFA_84, CoMSiA_21, CoMSiA_84and
QSAR_GFA, QuaSAR-Evolution solutions, where “_21” and
“_84” symbols mark models created on the original and updated
sets of SHBG ligands respectively.

After sorting all eight sets of predicted activities, we computed
the cumulative votes for 1,419 molecular structures, where an
entry would receive a vote for every “top 15%” appearance.
Based on these cumulative parameters (with the maximal
possible value of 8.0), we selected a list of 111 hits, all of which
had been voted on more than 3 times.

After the final visual inspection, we formed a list of 87
compounds out of which 41 chemical substances could be
readily purchased in sufficient purity and quantity for biochemi-
cal verification as SHBG binders, as described below.

Experimental Testing. All 41 compounds selected from the
3.3 million ZINC entries36 by applying drug-likeness criteria
followed by the combination of docking, CoMFA, CoMSiA,
and 4D QSAR filters were further screened for their ability to
interact with the SHBG steroid-binding site in Vitro. The
screening assay involved a modification of an established
competitive steroid ligand-binding assay that employs tritium
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labeled 5R-dihydrotestosterone as the radio-labeled ligand (see
the Materials and Methods for details).

The initial experimental screen of test compounds was
conducted at a single high concentration (approximately 100
µM), and 25 out of 41 compounds demonstrated some SHBG-
binding competition with the tritium-labeled 5R-dihydrotest-
osterone. The seven substances that displaced more than 50%
of bound 5R-dihydrotestosterone from the protein at the 100
µM concentration were further analyzed in a concentration-
dependent manner (more data can be found in the Supporting
Information).

The competitive displacement curves generated using these
nonsteroidal SHBG ligands (entries 85–91 in Table 1) are
presented in Figure 4, and the corresponding SHBG dissociation
constants calculated from the plot are included in Table 1.

As can be seen, the five most active SHBG ligands exhibited
nanomolar dissociation constants: 106.9 nM for compound 85,
408.8 nM for compound 86, 591.3 nM for compound 88, 833.6
nM for compound 89, and 964 nM for compound 90. The
parallelism of the corresponding competitive displacement
curves in Figure 4 indicates that these compounds are completely
soluble at high concentrations and behave in essentially the same
way as a steroid ligand with respect to their kinetics of binding.
Taken together with their high affinity toward the target, these
novel SHBG binders represent potential therapeutic prototypes.

It is also worth mentioning, that this hit rate appears very
good (25 out of 41 tested chemicals showed some activity, with
7 of them being nanomolar-to low micromolar binders),
especially considering that we could only test available (as
opposed to custom-made) compounds, and taking into account
the financial constraints of academia-based drug discovery
research.

Nonsteroidal SHBG Binders. Analysis of the docking poses
of the eight most active ligands (for seven of them pKdvalues
could be measured) provided additional and important insight
into the mechanism of SHBG binding. As Figure 5 illustrates,
all eight ligands likely form a hydrogen bond with Asp65 side
chain (supported by the secondary H-interaction with Asn82),
with two of them, compounds 89 and 90, also showing strong
H-binding toward Ser42 (supported by additional interaction
with Val105 backbone oxygen). These observations illustrate
the importance of Asp65 and Ser42 anchoring residues previ-

ously outlined in numerous SHBG-related publications.14,15 It
should be noted, however, that the presence of two anchoring
H-bonds did not make the compounds better binders. In fact,
three other substances 85, 86, and 88 all formed only one
hydrogen bond but demonstrate higher affinity toward the target
(likely caused by more favorable hydrophobic interactions).

The importance of hydrophobic forces is well recognized for
SHBG binding,14 and it is therefore no surprise that all eight
ligands have sizable aliphatic and aromatic cores that could
participate in close-range interactions within hydrophobic
pockets. One such pocket is located in close proximity to the
Ser42 residue and is formed by the Leu171, Met138, and Val105
side chains of human SHBG. The later residue also forms a
hydrophobic patch together with the Phe67 side chain providing
additional stabilization for bound ligands. Importantly, Phe67
is also likely involved in π-stacking with aromatic rings of 88,
89, and 90 and perhaps with the CdO group of 87 (see Figure
5 for more details). It is also possible that the SHBG affinity
for compounds 85, 86, and 88, which involves strong hydro-
phobic interactions with key residues within its steroid-binding
pocket, could be further increased by introducing additional
H-bond enabling groups into their Ser42-oriented ends. Such
structural modifications could represent an attractive strategy
for lead optimization. It is also possible that an extra hydrogen-
bond acceptor to the Asp65-oriented end of a ligand that would
engage the Asn82 side chain could enhance binding, as would
appear to occur in the cases of compounds 88 and 90.

Another “atypical” interaction within the active site has been
found for ligand 91, which forms an additional H-bond with
the Gly58 backbone oxygen. Such coordination has never been
previously observed for SHBG ligands, but the possible
relevance of this residue was hinted at by the LFER equation
(5).

Conclusions

Using available information on known ligands of human sex
hormone binding globulin, we have developed several struc-
ture–activity models based on conventional (CoMFA and
CoMSiA) and newly developed QSAR approaches. While
building such QSAR solutions we used molecular alignments
that contradict conventional way of superimposing steroidal
SHBG ligands, but are in line with direct crystallographic
evidence of the preferred steroid-binding poses. We have
demonstrated that molecular-field based techniques such as
CoMFA and CoMSiA are not very sensitive to ligand alignment,
as they result in almost indistinguishable QSAR models derived
from the traditional and “crystallographic” alignments of
steroidal scaffolds.

To compensate for that drawback, we developed novel ligand-
induced active site descriptors (called “inductive” 4D QSAR
parameters) which provided additional insights into factors
influencing ligand-protein interactions and which have been
successfully used in combination with other “in silico” drug
discovery tools. Thus, the developed range of “in silico”
solutions have been applied in a consensus manner to more than
2 million structures from the ZINC database36 and allowed
identification of 41 potential SHBG binders. When evaluated
experimentally, 25 out of 41 selected candidates demonstrated
detectible binding to human SHBG in plasma. Notably, five
such novel nonsteroidal SHBG inhibitors demonstrated nano-
molar dissociation constants, with the best binder exhibiting Kd

) 109 nM and representing the most active nonsteroidal SHBG
ligand known to date.

Figure 4. Displacement curves for test compounds used in the in vitro
competition assay to determine the relative binding affinities of human
SHBG ligands. The percentage of tritium-labeled 5R-dihydrotestoster-
one bound to SHBG in the presence of increasing concentrations of
competitor ligands.
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Since SHBG represents a prospective drug target the identified
nonsteroidal lead compounds can be characterized as potential
therapeutic agents laying a foundation for future lead optimiza-
tion studies.

Materials and Methods

Database Preparation. The initially considered set of 3.3 million
compounds from the ZINC 5.0 database36 was reduced to 2,066,886

entries by applying the drug-likeness criteria: molecular weight
between 300 and 800 Da; the presence of 1-10 hydrogen bond
acceptors; 1-5 hydrogen bond donors; less than 10 rotatable bonds,
and overall hydrophobicity below log P ) 5.00.

The resulting set of 2,066,886 drug-like structures has been
washed; i.e. all inorganic components have been removed, and
all ionizable groups have been coordinated with pH ) 7.0
conditions.

Figure 5. Docked poses of the most active nonsteroidal ligands within the SHBG binding pocket (blue). Only those residues that are most relevant to
ligand binding are shown. Hydrogen bonds are represented as white dots; hydrophobic interactions featured by thick green lines. The following eight
compounds are shown (ordered from left to right and top to bottom in the figure): 86, ZINC00084751 (not studied due to solubility issues), 87, 89, 90, 88,
85, and 91.
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All molecular structures have been optimized using PM3
semiempirical method implemented within the MOE package.34

Docking. The Maestro suite39 was used to prepare 1LHN and
1KDM protein structures for docking. All water and ion–molecules
were removed from the corresponding PDB files, and hydrogen
atoms were added and adjusted where necessary. Steroid-binding
sites were defined as 10 Å surrounding the cocrystallized ligands
in the 1KDM and 1LHN.

Subsequent docking was conducted using the Glide 4.0 parallel
suite20 with default settings. All computations were carried out on
10 dual-core LINUX/Centos4.3 IBM stations equipped with Intel
Pentium D CPU 3.00 GHz processors and 2 GB RAM of memory.
The overall docking time constituted 22 days.

QSAR Descriptors Calculation and Model Building. The extra
precision docking poses of 84 training set compounds, 64 chemicals
investigated in our previous SHBG studies, and 1,419 selected
molecules were used to compute 4D “inductive” QSAR descriptors
according to eqs 3 and 4. For every docked molecule placed in the
1LHN active site (defined as 7A surrounding of its native ligand),
we computed the direct 3D distances from all atoms of a ligand to
the active site’s polar hydrogens and heavy atoms. The computed
distances have were used in eqs 3 and 4 to compute the cumulative
parameters of inductive σ* and steric RS influence of a ligand to
every considered atom within the active site. All calculations were
implemented with customized SVL scripts of the MOE program.34

The defined1LHN active site contained 289 heavy atoms and
polar hydrogens, and therefore, for every ligand we computed 2 ×
289 ) 578 values of descriptors. These parameters were then used
to create predictive QSAR solutions based on the Genetic Algorithm
approximation.

The QuaSAR-Evolution models were built using “autoqsar.svl”
script obtained from the SVL exchanged site.35 The default setting
was used.

The GFA models were created using WOLF 6.2 software (with
default settings) kindly provided by Professor Hopfinger.40 Both
of these programs automatically handle the descriptors’ cross-
correlation problems and possess built-in capabilities for LOO cross-
validation.

The actual values of normalized 4D QSAR descriptors can be
obtained upon request.

Molecular Alignment. For generating the “traditional” set of
superimposed steroidal structures we used the SYBYL41 Fit_Atoms
functionality, which is based on the BMFIT method.42 The 1LHN
docking pose of its ligand was used as the reference, while other
molecules were translated and rotated in a way to fit the weighted
centroid of atoms of the “A” ring of steroidal scaffolds. In this
way, all steroids have been superimposed in ‘head-to-head’
orientations, and all nonsteroidal structures were also taken in their
docked configurations.

In the “corrected” data sets all steroidal and nonsteroidal ligands
were used in their respective 1LHN docking poses.

CoMFA Modeling. The SYBYL package41 was used to
construct all CoMFA models using the partial least-squares fitting,
with the cross-validation carried out by the built-in LOO procedure.

Both the traditional and expanded data sets of SHBG binders
(containing 21 and 84 entries, respectively) were used independently
to compute steric and electrostatic CoMFA fields. The steric ones
were calculated on 2 Å grids, by evaluating “6–12” Van der Walls
interaction with default CoMFA probes. We used distance-
dependent dielectric parameters to compute the Coulombic interac-
tions approximating electrostatic CoMFA fields and set the fields
truncation parameter to 30.0 kcal/mol.

For the traditional 21 steroids of the benchmark set we also
recreated CoMFA models based on traditional similarity-based
molecular alignment used in,12 with the resulting statistics repro-
ducing original values reported in ref 12.

CoMSiA Modeling. For the studied data sets, we computed 5
CoMSiA properties that included steric-, electrostatic-, hydropho-
bic-, hydrogen bond donor-, and hydrogen bond acceptor-fields
(computed with default settings). The fields were derived according
to similarity indexes (computed with 0.3 attenuation factor) of

molecules brought into a common alignment. In the CoMSiAstudy,
we utilized the same alignment schemes as in CoMFAmodeling.

All calculations were carried out with default settings; each
CoMSiAproperty of a given atom was scaled to 74.1% for its 1 Å
proximity, to 30.1% for >2 Å surrounding, and to 6.7% for the
area within 3 Å.

The final CoMSiA models were constructed using the partial
least-squares (PLS) algorithm23 and cross-validated by the LOO
procedure implemented by the SYBIL package.41

Enrichment Calculations. All predicted SHBG affinity param-
eters (including Glide docking scores, CoMFA, CoMSiA, and 4D-
QSAR outputs) have been processed into the parameters of percent
yield (%Y), percent accurate (%A), enrichment factor (E), and
Goodness of Hit list (GH) parameters custom for in silico screening
studies:

%Y = Ha ⁄ Ht

%A = Ha ⁄ A

EF = (Ha ⁄ Ht) ⁄ (A ⁄ D)

GH =(Ha(3A + Ht)

4HtA )(1 −
Ht − Ha

D − A )
where Ht is the total number of compounds in the hit list (in our
case, top 15% portion of the sorted predictions), Ha is the number
of known actives in the hit list (true positives), A is the active
compounds in the database, and D is the number of compounds in
the database. We have only reported the EF values; other parameters
can be obtained from authors upon request.

The corresponding calculations have been carried out using in-
house SVL scripts.

SHBG Ligand-Binding Assay. An established competitive
ligand-binding assay was used to determine the relative binding
affinities of the studied compounds to human SHBG, compared to
testosterone and estradiol standards.43 In brief, the assay involved
mixing 100 µL aliquots of diluted (1:200) human pregnancy serum
containing approximately 1 nM SHBG, which was pretreated with
dextran-coated charcoal (DCC) to remove endogenous steroid
ligand, with 100 µL of tritium-labeled 5R-dihydrotestosterone at
10 nM as labeled ligand. For the screening assay, triplicate aliquots
(100 µL) of a fixed amount (100 µM) of test compound were added
to this mixture and incubated overnight at room temperature. After
further 10 min incubation at 0 °C, 500 µL of a DCC slurry was
added at 0 °C and incubated for 10 min prior to centrifugation to
separate SHBG-bound from free 5R-dihydrotestosterone. Com-
pounds that displaced more than 35% of the tritium-labeled 5R-
dihydrotestosterone from the SHBG in this assay were then diluted
serially, and triplicate aliquots (100 µL) of known concentrations
of test compounds were used to generate complete competition
curves by incubation with the SHBG/5R-dihydrotestosterone mix-
ture, and separation of SHBG-bound from free steroid, as in the
screening assay. The amounts of 5R-dihydrotestosterone bound to
SHBG at each concentration of competitor ligand were determined
by scintillation spectrophotometry and plotted in relation to the
amount of 5R-dihydrotestosterone bound to SHBG at zero con-
centration of competitor. From the resulting competition curves,
IC50 concentrations could be calculated if displacement of more
than 50% of tritium labeled 5R-dihydrotestosterone from SHBG
was achieved.

The dissociation constants (Kd) have been calculated from the
relative binding affinity parameters using the following equation:
1/{Ka(dihydrotestosterone)/[(1 + R)/RBA - R]}, where Ka(dihy-
drotestosterone) ) 0.98 × 109 M-1 is the association constant of
the 5R-dihydrotestosterone and R (0.05) is the ratio of bound-to-
free 5R-dihydrotestosterone at 50% displacement in the assay.
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